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Ahstraet-An analysis is carried out of the velocity, energy and concentration fields in laminar boundary 
layers with arbitrarily distributed mass transfer at the surface. The approach is based on treating the effect 
of the mass transfer as a perturbation. The first-order effects are simple to evaluate numerically; higher 
order effects may be obtained systematically but require modest computing effort for their numerical 
evaluation. Application is made to the boundary layer on a cone with uniform mass transfer and with an 

energy and concentration balance imposed at the surface. 

NOMENCLATURE 

arbitrary constants, cf. equations (15) 
and (18); 
arbitrary constants, cf. equation (44) ; 
skin-friction coefficient ; 
square of the norms of the IV,, functions, 
cf. equation (17) ; 
square of the norms of the M, functions, 
cf. equation (46); 
modified stream function, cf. equation 

(2); 
Green’s function, cf. equations (23) and 
(51); 
stagnation enthalpy ratio, hJh, e ; 

wall enthalpy parameter, cf. equation 

(64) ; 
stagnation enthalpy ; 

index, 0 for two-dimensional flow, 1 for 
axisymmetrical flow ; 
partial differential operator, cf. equa- 
tions (9) and (43) ; length of permeable 
surface ; 

M”, 
N,, 
r, 

s, 

U, 

V, 

X, 

YP 

eigenfunctions, cf. equation (45); 
eigenfunctions, cf. equation (16) ; 
cylindrical coordinate of the body sur- 
face ; 
transformed streamwise variable, cf. 
equation (1) ; 
velocity component in the streamwise 
direction ; 
velocity component in the normal direc- 
tion ; 
streamwise coordinate ; 
normal coordinate. 

Greek symbols 

Y II, eigenvalues, cf. equation (45) ; 
6, mass transfer parameter, cf. equation 

(26) ; 
% transformed normal variable, cf. equa- 

tion (1) ; 

29 

wall species parameter, cf. equation (64) ; 
eigenvalues, cf. equation (16) ; 

PL, viscosity coefficient ; 

r, dummy variable ; 
* The research reported here was initiated while the 

author was at the Polytechnic Institute of Brooklyn and was P, mass density ; 

supported there by the Aerospace Research Laboratories, X, transformed streamwise variable, x = 
Office of Aerospace Research, United States Air Force, $* = -f W 
under Contract No. AF 33(657)-8286. In the early work Mr. 
Shun Chen assisted and Professor Lu Ting provided helpful 
discussions. The research was carried to fruition at UCSD 
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under a grant for research, Grant No. GK-95, from the e, refers to conditions in the external flow ; 
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L refers to length of permeable surface ; 

U’, refers to conditions at the body surface 
(wait). 

INTRODUCTION 

THERE ARE a variety of problems in laminar 
boundary layer theory and practice which in- 
volve mass transfer from and into the surface on 
which the layer is developing. As a resuh there 
exists considerable literature on the effects of 
mass transfer with and without concomitant 
species diffusion and energy transfer. Because 
of the considerable s~mpli~cations which accrue, 
most studies have been concerned with distribu- 
tions of mass transfer and of properties in the 
external stream such that similar flow prevails. 
There are, however, cases for which the require- 
ments of similarity are unacceptable ; examples 
of these are: transient, time-dependent sublima- 
tion; the growth of a deposited layer on a cryo- 
genic surface; localized mass transfer such as 
occurs on surfaces consisting of combinations 
of permeable and impermeable materiats; and 
porous surfaces with uniform mass transfer and 
uniform external streams. Reiativefy iittfe effort 
appears to have been devoted to these non- 
similar flows. 

It is the purpose of the present paper to 
develop a method of analysis for flows with uni- 
form external streams but with arbitrarily dis- 
tributed mass transfer. As will be shown below 
the method of sotution involves successive 
appro~mat~ons which are formally identical 
but which become numerically more complex as 
the higher approximations are calculated. The 
first-order effects of mass transfer on the vefocity 
field can be computed by slide rule or desk com- 
puter while the same effects on the energy and 
species fields and the higher order effects on all 
three involve in general a double quadrature of 
a complicated integrand and thus require a 
modest computer. Accordingly, some might 
consider the present analysis of practical in- 
terest only for smaff but arbitrarily distributed 
rates of mass transfer. 

The basis for the method resides in the per- 
turbation analysis of Libby and Fox [ 1,2]. The 
eigenvalues and eigenfunctions developed there 
and in [3J supplemented by a few functions 
which can be computed once and for all, lead ta 
closed-form solutions for first-order effects. 

The paper is organized as follows: The solu- 
tion for the velocity field is presented first and 
then compared with more accurate results in 
several typical cases. The related treatment of 
the energy and species conservation is developed 
next. The solutions are apptied in a numerical 
example to the flow about a cone with the uni- 
form injection of a foreign, nonreactive gas and 
with energy and mass balance taken into ac- 
count, The relevant literature will be referenced 
as the analysis is developed. 

THE VELOCITY FIELD 

We consider a laminar boundary layer with a 
uniform external stream in either a two-dimen- 
sional or axisymmetric geometry. We assume 
that the frequently employed assumption pp N 
pe,e is sufficiently accurate. Accordingly, in 
terms of the modified stream function AAs, q) the 
velocity distribution is given by the partial 
differential equation (cf. Lees [4] and Hayes and 
Probstein [S]) 

s = pseue i r=j dx 
0 

and where the usual notation is employed. The 
velocity distribution is given in terms off(s, s) 

by 

u/u, = f, (2) 

and 
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At the surface equation (3) may be written in a 
form convenient for later requirements, i.e. as 

(P&&V%?~~ = - $ &wf.fJ. (41 

The initial and boundary conditions to be 
impased on the solution of equation (1) for 
present purposes are 

I-(0, ?> = _I%?) 

.I-&, co f = 1 1 
f(s, 0) = f&f, given. 

! 
The initial profile expressed in terms ofJ(q) is 
given by the ordinary differential equation 
derivable from equation (1) by letting s -+ 0, 
namely, 

f:” + Aff’ = 0 (61 

subject toJ(O) = &,(O), given&(O) = 0, fi(co) = 1; 
where ( )’ denotes d~~erent~at~on with respect 
to yf* 

We consider a solution to the problem posed 
above in the form 

f(s, ?I = fofpr) + fi(% r) (71 

wheref, is the Blasius function defined by 

.f;;’ + .fo.f; = 0 (8) 

subject to f*(O) = f;(O) = O,&(a) = 1. Then 
equation (1) can be written in the convenient 
Form 

on ~~urbatio~ techniques. Suppose, for in- 
stance, we put an iteration index onft in equa- 
tion (9) and onfr,; in equation (IO) such that on 
the left-hand sides we have f’“’ and fyJi and on 
the right-hand sides we have f\“-” and fik,,i I). 
The solution obtained for f’,” with f’p’ - 0 
corresponds to a first-order perturbation solu- 
tion. However, the way will be open for succes- 
sive improvements, i.e. fork > 2; these, ofcourse, 
correspond to higher order perturbation solu- 
tions. If, as we shall largely do here, we actually 
compute only the first-order solutions, the mass 
transfer expressed in terms of f,Cs) is imphed 
small in absolute value compared with unity. 

We shall satisfy the boundary conditions with 
the approximation corresponding to k = 1 ; 
accordingly, these conditions for k 2 2 will be 
homogeneous. Thus consider the problem for 
k = 1 with againfi’) zz 0; we have 

&fY’ = (fYIrltls + f*(fY’Js~ -I- f”P’ 0 1 

- qxLft%, - f;;ifdJ = 0 fl1) 

subject to 

_V(O ?Q = f@(s) 

f:l)(s: *) = f,(s), given 

(Yil’,,(s, 0) = (PI ( 1 qs,a 1 = 0 

and 

Correspondingly, equation (6) can be written as subject to 

f‘;‘li +fof;‘:i +f’dfl,i = -.fi,ifY,i W) f \tJi =: j,(O), given ; 

where&i(q) E .f~(fld- 
(f’l”i)‘(O) = (fpJ’(oo) = 0. 

Before considering the boundary conditions The analysis of Libby and Fox [l] provides a 
applicable to fi(s, ~1 we expose our method of means for solving the problem posed by equa- 
solution which may be considered as one based tions (1 I) and (12); consider kst the solution for 
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the initial profile, i.e. the solution of equation 
(12). This may be expressed directly in terms of 
the function denoted previously as fill, a func- 
tion with the boundary conditionsf$“(O) = 1, 
(f’:))‘(O) = (f\‘))‘(m) = 0. It is,unnecessary for 
present purposes to carry the superscript unity 
so we denote this function byf,(q) ; for complete- 
ness f;(q) and the crucial wall value .f;‘(O) are 
shown in Fig. 1. Thus 

fl’.‘i(r) = ~(O)~(~)* (13) 

The solution forf\‘)(s, pt) can be built up from 
a unit soiutionf(s, v ; i) defined by 

subject to 

L,f= 0 (14) 

f(0, V ; 5) = 0 

j*,@> 0; 5) = _&, EJ ; 0 = 0 

T(s, 0; a = 0, 

= 1, 

LIBBY 

The solution to this problem within some arbitrary constants A, is 

where the ;tr,n and related N,,.(Q) are the eigen- previous work it was shown that the eigenfunc- 
values and eigenfunctions given by Libby and tions so defined form a complete orthogonal 
Fox [ 1] and with greater numerical accuracy by set for functions whose derivative vanishes as 
Libby [3]. Mathematically, they are defined by q -+ 00 at least as fast as exp [ -i(y, - x)“]. The 
the ordinary differential equation orthogonality condition is expressed as 

N;’ + fOW; + &j- ;N; 

+ (1 - ,$)J;;N, = 0 (16) i [(fb)4/.f:] (N,lfbY 

subject to the conditions N,(O) = N”(O) = (Nifb)’ d? = CA,,,,. (17) 
N:(a) = 0 and by the requirement that as 
q -+ cc,N:, N exp [ -&(r - x)‘], i.e. that the In previous work [3] the first 20 eigenvalues 
power function decay, which exists in the asymp- and the square of their norms, C,, for N:(O) = 1 
totic solution of equation (16}, is suppressed. In have been presented. 

FIG. 1. Velocity profile for unit mass transfer, 
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The A, coefficients in equation (15) must be 
determined so thatf(s, q; s) = 0, r,~ > 0. Although 
there are a variety of means for employing this 
condition for determining the A, coefficients, 
we choose to exploit the orthogonality property 
of the N, functions so that this condition is 
satisfied in an integral sense ; we obtain from 
equation (17) 

4, = -C, ’ $ Nfb)4/f;;l 

(~~~~~ LfJfb)’ drl- ‘28) 

The values of A, and the first 20 eigenvalues are 
given in Table 1. 

Table 1. The eigenvalues and coeficientsfor the velocity 
solution 

- 

n 4 A, ?I 6” 4 

I 2 0.2205 11 20.979 0.157 

: 3.774 5,629 0.2309 O-2179 13 12 22,920 24.865 0.153 0.149 
4 7.513 0.2057 14 26,811 0,146 
5 9-414 0.1948 15 28760 0142 

6 il.327 O-1859 16 30.710 0*140 
I 13247 0.1784 17 32662 0.137 
8 15.173 0.1719 18 34,615 0.135 
9 17.104 O-1661 19 36.570 0.132 

10 19mo 0.1610 20 38.526 0.130 

With the solutions forf\t)i(q) and!@, q; {) we 
can build up the solution forf’,‘)(s, q) by means 
of a Duhamel integral ; we get 

Substitution of the solution for &s, q ; 5) and 
integration by parts leads after some rearrange- 
ment to a convenient form for the desired solu- 
tion, namely, 

Althou~ we will not compute the higher 
order solutions, it is perhaps of interest to point 
out that a formal solution for them can be 
written down. The problem forfi2)(s, q) is found 
from equations (9) and (11) to be 

L,f’:’ = P’(s, q) = - f\” (f\‘& 

+ 2sC(f11’)4fi)~’ - (Pi%(P>,] (21) 

subject to the conditions 

f’:‘(O t-r) = ~~2~(~) , 

fl”(S, 0) = (y&(s, 0) = (~~*)~~(s, co) = 0 

where the next order solution for the initial 
profile, f\:\(q), is given from equations (10) and 
(13) as 

= -fZ’(OU2(VU”;(tt) (22) 

subject to 

The solution for equation (22) can be obtained 
readily either by numerical integration or by 
quadrature using the independent solutions to 
the homogeneous equation given by Libby and 
Fox [l]. Moreover, the solution of equation (21) 
may be obtained in terms of the Green’s function 
G,(s, 9 ; so, tfo) given previously [ 1] ; there results 

x H(%, ttd ds, h. (231 

The numerical evaluation of the double integral 
here requires a modest computer; for some 
relatively simple distributions f,(s) the double 
integral becomes a series of single integrals. 
Clearly, higher order perturbations can be 
determined. 

fi% rl) = f;,(s) C_fM + .zl A, WV)] - mzl MA/‘2) K(W-*“n [ t-+““- ’ fX3 d5. (20) 
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COMPARISON OF THE VELOCITY FIELD 
WITH OTHER ANALYSES 

The first-order solution given by equations 
(7) and (20) can be applied to several problems 
for which more accurate solutions are available. 
Emmons and Leigh [6] provide solutions for 
injection distributed so as to correspond to 
similar flow, i.e. forf, negative and constant. In 
this case our first-order solution is 

f(s, lit) = f(r) = fo(~) - t --fw)m (24) 

so that the gross quantity of technical interest, 
f: is given by the linear relation 

fl/f;;_, N 1 - l-54 (-I,). (25) 

Figure 2 shows the comparison between equa- 
tion (25) and the exact numerical results of 
Emmons and Leigh put in terms of our variables ; 
excellent agreement to -f, N 0.4 will be noted. 

FIG. 2. Comparison of predicted effect of injection on skin 
friction. 

The case of the boundary layer with uniform 
mass transfer, i.e. of (pv), = constant, has been 
treated by several authors. Most recently Smith 
and Clutter [7J have applied their difference- 
differential technique to the case of uniform 
suction for constant properties flow while Libby 
and Chen [83 have obtained for the compressible 

case a series solution which is in terms of a mass 
transfer parameter L z [ - (pv),(siZ)~_!(p,~,~.)1, 
which is valid for either suction or injection, and 
which is carried out by them to five terms. if 
(pv), is constant everywhere, equation (4) yields 
the result that 

f,(s) = E(S) m s* 

and equation (20) becomes 

(26) 

The function of q within [ ] of equation (27) 
corresponds to the function N,(q) in the nota- 
tion of Libby and Chen. We note here that the 
series in n is rather slowly convergent, the 
A,(1 + A,)- ’ sequence decreasing by a decade 
in 10 terms and by a factor of 20 in 20 terms. This 
and similar behavior in other cases prompted 
the author to compute additional values of 1, 
and C, and thus of A, (I3]. A measure of the 
accuracy obtained from the available terms may 
be obtained by considering the derivative at the 
wall, namely 

&,(s, 0) = f; = 0.46960 + (28) 

where the upper number is obtained from 10 
terms and the lower from 20. This coefficient 
may be compared to the value 1.225 from Libby 
and Chen. In view of the slow convergence of 
the sequence of partial sums the difference in 
these two coefficients is not unreasonable. The 
results given by equation (28) are shown in Fig. 3 
along with those obtained by Libby and Chen; 
it will be noted that our present first-order results 
would appear to be entirely sufficient for most 
purposes for injection, i.e. for 6 < 0 but to be 
of limited accuracy for suction. In cases of 
suction for f, 2 0.2 higher order approxima- 
tions are required. 

We consider next the problem treated by 
Pallone [9] and by Howe [lo] ; this involves a 
permeable surface with injection dist~buted so 
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that a similar flow (f, = negative constant) pre- 
vails over a length of two-dimensional surface 
L. Downstream of this length the surface is 
impermeable. In this case the present analysis 

f; / / 
I 

/ 

FIG. 3. Comparison of predicted shear parameter with uni- 
form mass transfer. 

would provide for the initial section 0 d s < sL, 
where sL = pepeu,L, the solution given by 
equation (24) withf, = f,(O) ; for s > sL equa- 
tion (4) yields 

f,(s) = f,(O)(sls)* (29) 

so that equation (20) becomes in this case, again 
for s > sL 

and for f,(O) = -0.354 is compared in Fig. 4 
with the prediction of Pallone [9] ;* the agree- 
ment may be seen to be satisfactory. Note also 
that Libby and Fox [l] carried out a similar 
first-order calculation from an entirely different 
point of view and indeed gave second-order 
values at several values of x/L. The present 
results are in good agreement with those pre- 
viously obtained and with more accurate 
calculations. 

I.0 

0.8 

Cd% 

0.7 

0.5 

0.4 II 
2 3 ,q 

X/L 

FIG. 4. Comparison of predicted distribution of skin-friction 
downstream of permeable wall with -f,(O) = 0.354. 

.fbJ 49 = Ml) + fwKwIsL)-* w-z(?) + “El oJ,(~)] 

- “21 4J%)Ck - wd- *tan- I)] (1, - 1,-i}. (30) 

Note of course that S/Q = x/L. 
The quantity which is usually employed in the 

comparison of various solutions to this problem 
is the distribution of the ratio of skin-friction 
coefficient with upstream injection to that which 
would prevail at the same station without in- 
jection ; i.e. cJ/cr, 0 = f&(s, 0)/f:, W. It is perhaps 
of interest to note that the x-wise derivative of 
this skin-friction ratio at x/L = 1 is finite. The 
distribution of this ratio with x/L for x/L 2 1 

We conclude from these comparisons that 
provided -05 5 f, 5 0.2, the present analysis 
provides a rapid and reasonably accurate solu- 
tion. Clearly it can be readily applied to cases 

l It should be noted here that the initial profile data used 
by Pallone came from Low [l l] whose definition off differs 
from ours by 2% The identification off,(O) = -0.5 in Libby 
and Fox [I] for their comparison is ambiguous although the 
numerical results are correct. 
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not previously treated, e.g. to the Pallone prob- 
lem for axisymmetric flow and for uniform in- 
jection over the section 0 < x < L, and to cases 
of partial suction for compressible and/or 
axisymmetric flow with some assurance that 
reasonably accurate predictions will result. 
These first-order results can be obtained by use 
of desk computers and even by slide rule. Some- 
what more ambitious computations involving 
equation (23) will provide more accurate results 
and will extend the range off, which can be 
accurately considered. 

SOLUTION OF THE RELATED ENERGY AND 
SPECIES CONSERVATION EQUATION 

In many of the flow problems which involve 
mass transfer and which have velocity fields 
describable by the solution presented above, the 
related heat transfer is of interest. Indeed in 
cases of injection the gases introduced by the 
mass transfer are frequently different from those 
in the external stream so that both the energy 
and species fields are frequently desired. The 
previous work of Fox and Libby [2] and of 
Fox [12] has provided a basis for the appro- 
priate solution of the equations for conserva- 
tion of the energy and species according to either 
an iteration or a perturbation point of view. 
Applications involving mass transfer in the past 
have been to special cases, e.g. to the Pallone 
problem. Accordingly, it appears of interest to 
develop here the solutions related to the velo- 
city field with arbitrary mass transfer presented 
above. We note that flows involving gas-phase 
chemical reaction require an iterative procedure 
for obtaining the solution of each order (cf. 
Fox [IZ]) and will not be considered here. 

We adopt the frequently employed ap- 
proximation of simplified transport properties, 
pp N constant, and the Prandtl and Schmidt 
numbers equal to unity* and consider first the 
energy equation. Under the present assumptions 

the energy equation in terms of the stagnation 
enthalpy ratio, g = h,/h, e, is 

949 + fs, - 2s(f,g, - f,s,) = 0 (31) 

subject to the following conditions which will be 
discussed below : 

do3 V) = Si(S) 

g(s, co) = 1 

g(s, 0) = &v(s). 

The initial distribution gi(?) is obtained from the 
solution of 

subject to 
gf’ + Jg: = 0 (32) 

g,(O) = g,(O) 

g,(cn) = 1. 

The boundary condition at the surface has been 
expressed in terms of a distribution of gw ; there 
are problems for which this is immediately the 
proper condition, but there also arise problems 
for which the proper surface condition involves 
some relation among g,(s), g&s, 0) and f&)*. 
In these problems the solution is conveniently 
found by making an a priori assumption that 
g,(s), given but arbitrary, is known and by 
forming an integral equation implied by the 
proper boundary condition. We thus adopt the 
view at the moment that g,(s) is known. 

With equation (7) substituted into equation 
(31) the latter can be conveniently written as 

&g = &I + fog, - 2sfbs, = -fig, 

+ 2s[(f,),g, - Gh?,l. (33) 

Similarly equation (32) becomes 

Sl’ + fogi = -fi. ig:. (34) 

We now consider a perturbation point of view 
whereby 

g(s, ?) = g’% ?) + g’2’(s, V) + . 

* It will be recognized that the ordering uoint of view 
discussed after equation (10) permits inclusiid of the effects 
of variable transport properties if desired. 

Sit?) = d”(S) + d”(1) + . 

* Transient sublimation would be such a case. 
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so that the first two orders are given by 

L,Q@” = 0 

L,Q”2’ E --f\l)gY1 + 2s[(f(,')),gf) 

- (fS”‘)dpl 

The solution for Q(“’ can be constructed from 

(36) 
a unit solution in a fashion similar to that used 
to develop f’,” [cf. equations (14) and (Is)]; 
consider a unit solution CJ((S, 11; c) such that 

(37) L& = 0 (43) 

(38) QK4 ? ; 4 = SC% 03 ; 5) = 0 

(39) Qb, 0; 0 = 0, O<S<< 

and where higher approximations for g can be = 1, 5 < s. 

The solution to equations (43) is 

?Ifs,?; t) = 4 OGS<< 

= (1 -Sb) = "El w/5~-fy~K(vh 5<s (4) 

successively obtained. It is noted here that if a 
first-order effect of the deviations of the velocity 
field from that described by the Blasius solution 
on the energy field is to be computed, then 
g{“‘(s, q) must be determined since Q”“‘(s, 4) 
depends only only. 

The solution for the first-order initial profile 
is 

Q!” = Q I w (01 + (1 - @ w Cw.fb (40) 

so that the solution for the second order is given 

by 

(Q!2’)” 4” f*(Q12’)’ = - (1 - @w(O)) I 

.cuy’i> (41) 

subject to homogeneous boundary conditions, 
The solution of equation (41) is 

where the Y,, and the M,,(q) are the eigenvalues 
and eigenfunctions given by Fox and Libby [2] 
and identified by them as A,,, and N,,,(q).* For 
completeness we state that the M,(q) functions 
are given by the differential equation 

M:: + f*M:, + Y*f*& = 0 

subject to 
M,(O) = M”(co) = 0, 

(45) 

Again provided exponential decay of M, as 
q + co is required, the M,(q) functions form a 
complete orthogonal set with respect to all 
functions which decay exponentially to zero as 
q -+ 00 and satisfy the orthogonality condition 

Similarly, closed-form solutions can be obtained In previous work the first 10 eigenvalues, the 
for the higher order approximations for the norms for M;(O) = 1, and the eigenfunctions 
initial profile. Note that if the flow is such that a have been presented. 
similar solution prevails, i.e. that Q,(s) z g,(O) The I&, coefficients in equation (44) can be 
andf,(s) EE &(O), then this initial solution pre- 
vails for all s and is the second-order solution * T&z noi&~% bz~ been changed since we need here 
for the entire flow_ severti biffer~~~ sets of eigenfuactions. 
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determined so that the function g(s, Q; i;) is 
continuous at s = 5: by, e.g., utilizing equation 
(46). Indeed in this case the integrals can be 
evaluated analytically so as to obtain 

B, = (Y”D”J‘b’Jl. (47) 

We list here in Table 2 for completeness the 
values of l/n and B, obtained previously. 

Table 2. The eigenvalues and coej]kients for the energy and 
species solutions 

LIBBY 

illtegrand in equation (50) is exphcitly given 
provided j,(s) and y,(s), now interpreted as 
,j&sO) and g&s,) respectively, are known. The 
numerical evaluation of gC2’(s, y) including a 
number of eigenfunctions in Gz, ,j’(,” and u” 
requires 3 modest computing effort. 

We have thus developed the formal solutions 
for the first- and second-order solution for the 
energy equation under the assumption that 
g,(s) is known. Higher order solutions can be 
readily generated and lead to forms such as 
equation (50). We repeat our previous remarks 
that if g,,,(s) is unknown but related in some way 
to gs(s, 0), then the above solutions may be used 
to generate an integral equation which defines 
y,(s) and which may be solved numerically by 
iteration. The numerical example discussed 

Thus the solution for g(i) may now be written down ; it is 

g”‘(s, rl) = go + (1 - g~(O)~~~ + j Bfs, li ; ~)(dg~/d~) dt. 
0 

(48) 

After substitution of equation (44) and some rearrangement, there is obtained the convenient form 

P(s, ?) = fb + C?,(s) CCI - fb) - .Ei &MM1 

+ $i (0,/2) M,(U) s-fYn ; gfYn- ’ sw(t9 d5. (49) 
0 

Since we shall be interested in gt2’(s, q), we consider the solution of equation (37). If the right- 
hand side thereof is specified symbolically as J(s, q), then the solution for g(2)(s, pi) satisfying the 
appropriate initial and boundary conditions is expressible in terms of the Green’s function G,(s, 
g; so, so) involving M,(q) functions (cf. Fox and Libby [2]); the rest& is 

g”‘(s, vl) = sf%) + [ i G,(s> r ; so> fob.%,> ~jc,J ds, dv,, (50) 

where in terms of the present notation 

(51) 

With equation (51), and with equations (19) and below will demonstrate this technique. 
(48) substituted into the definition of J and the There is little which needs to be added to the 
result considered a function of s0 and qo, the above discussion to apply it to the analysis of 
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species conservation provided, as we shall as- 
sume here, no gas-phase chemical reaction takes 
place. Let the symbol x denote the mass fraction 
of species i. Then if, as is frequently done, it is 
assumed that a single diffusion coefficient exists 
and that the Lewis number based thereon is 
unity, then the conservation equation for x is 
the same as equation (33) with g replaced by I$ 
Furthermore, if we take the point of view that 
Y&O) = K,,( )’ g s 1s iven, then the entire analysis 
for Yi’) and Yj’) completely parallels that for 
g’” and g@’ with the single exception that the 
value of x as 4 + co in general will be nonunity. 
Thus the infinity condition on the initial distribu- 
tion for x, i.e. on Yf”(0, q), must be altered. Now 
just as in the case of the energy equation there 

transferred to the exposed surface of the cone is 
all absorbed by the injected gas.* The two- 
dimensional counterpart of this problem has 
been done previously by Libby and Chen [S] 
and their series expansion method suitably 
modified to account for the behavior of ,f,(s) 
with s, namely f, m st rather than{, - st has 
recently been redone by Libby [13]. However, 
since the range of f,(s) of interest in injection 
with no external sources of energy transfer is 
rather limited, the first-order solution obtained 
here may be su~ciently accurate for most pur- 
poses. In addition, of course, the present analysis 
is readily applied to nonuniform, nonsimilar 
distribution of mass transfer whereas that of 
[S] and [13] applies only to (PO), = constant. 

We consider first the velocity field ; on a cone I - x - s* so that with (pu), = constant, equation 
(4) yields 

(52) 

are applied problems for which the surface con- 
centration is known a priori; an example is a 
gas mixture flowing over a surface with sufficient 
catalytic efficiency to maintain an equilibrium 
concentration at the surface. There are also 
problems whose solution is given by forming 
an integral equation for x,,.,(s) from the surface 
boundary condition and from the solution 
obtained on the basis of &, being known. Our 
numerical examplediscussed below will illustrate 
this technique. 

APPLICATION 

As an application of the above analysis to a 
problem which leads to an integral equation for 
g,(s) we consider the boundary layer on a cone 
with the uniform injection of a foreign, nonreac- 
tive gas. We assume that the energy and con- 
centration of the injected gas internal to the 

where 0, is the cone halfangle. We shall be able to 
formulate the solution for the velocity, energy 
and species fields in terms of 9 where 

-fw($) = ?i* (53) 

and where comparison of equations (52) and (53) 
clearly yields the relation between $ and s. Thus 
there must be explictly specified the particular 
mass transfer rate, cone angle, external flow, etc., 
only when transformation back to physical 
x, y variables is performed. 

The solution for the velocity distribution is 
obtained from equation (20) as 

f@? rl) = MI) - ‘s4[fi(rl) + $, ~“W)I (54) 

* We assume here that there are no external sources of 
energy flux and thus that conduction and diffusion at the 

porous surface are constants and that the energy surface provide the tot& energy transfer. 
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where 

A, = A”(1 + 32,)-l*. 

From equation (54) we can compute the entire 
velocity field on the cone including the skin- 
friction parameter, f;(3). We note that for 
$* N_ @55 the shear becomes vanishingly small 
when the 10 terms in the summation are in- 
cluded so we restrict our interest to 2* 5 f. We 
note also that we do not consider the interesting 
question of the value of 3 for whichf: = 0, i.e. 
of the “blow-off’ value for this conical case. 
Such a question can be answered neither by the 
present analysis nor by that of [S] and [13]. 

balancing the energy transmitted to the porous 
surface is a change of the enthalpy of the in- 
jected gas, then the boundary condition at the 
exposed surface is 

g#, 0) = +s* (g,, - gJ. (55) 

Our program then will be to find g”’ and g(‘) 
under the assumption that g,,, is known and then 
to formulate an integral equation from equation 
(55) yielding the unknown distribution of g,. 

We start by noting that equation (55) implies 
g,(O) = 1 and thus that 

Consider next the solution of the energy 
equation ; in this case the distribution of g,(s) is 
not known a priori but is to be determined by an 
energy balance. If the symbol ge denotes the ratio 
of the enthalpy of the injected gas to the stagna- 
tion enthalpy of the external stream, and if, as 
mentioned above, the only mechanism for 

Thus we take the point of view that although 
gw is arbitrary its value at the origin is taken as 
its expected value, namely unity. The solution 
for g”‘(3, q) is thus given by equation (49) ; we 
shall need 

g!‘) E 1 -. 

gj”’ E 0. 

gY’(3, 0) = j-;,$% - g,(3) [f;, w + “El &I + fl (B,Y,/~) 3rfYn [ tfYn- ’ s,(5) dt. (57) 

We note that if a solution, which does not account for the trst-order alteration of the velocity field, is 
sufficient, equation (57) used in equation (55) yields an integral equation for g,(3) which may be 
solved numerically. 

Consider next g’2’(3, q); with the first-order solutions given by equations (54) and (57) and with the 
Green’s function given by equation (51), the elements necessary to treat equation (50) with g, 
assumed known are available. We are interested in g$2)(8, 0); in this case the double integral in equa- 
tion (50) can be reduced to a series of single integrals. The results are in a form more convenient for 
numerical analysis if the dependent variable is changed from gw to 9 = (1 - g,)/( 1 - gJ and .from 
3 to x zz 3%. Thus equation (57) becomes 

Sl:‘(X> 0) = (I - s,)Mf;;,, + “gi RI - $i 30% x-~~” a 13’,-i @ dr) (58) 

and after considerable algebra there is obtained 

S’,2’(X, 0) = -(l - SC) $i 0,’ ([x][UA~ + jzl 6Kj x-~“’ I r3’jm1 4 d51 

+ L-6K3’” % t3”’ 8 d51 C&2, - ((3~” + I)/@ unl 

+ [3(jxp3Yn f $Yn_3Yj ([ 5 
3Yj-13 d5) dsO][(SQ - ((3~” + 1)/6)cj]) (59) 

0 

___... 

* It is interesting to note that for the two-dimensional case the factor (1 + 3A,) becomes (1 + I,) so the velocity field 
and indeed the solutions for the two cases are different and not scaleable. This is also implied by Libby and Chen [S]. 
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where and to approximate only d(t), e.g. as is done here 
by a piecewise trapezoidal rule, and to evaluate 

u, = $ (KH’Ylf;;) d? 
analytically the resultant integrals. To illustrate 
suppose we wish to evaluate at a value of x = 

Kj = ($Bjrj) $ (M,M$‘IfS) dq 

NA the integral 

Q, = $ (M,HIf;;)‘Y d? 

Z s x-~YJ I, t3”-’ g(t) dt;, 

ZLj = (;Bjyj) 7 (M&Zlfb’)‘Mj dq 
0 

A is a constant interval into which the range 
of x is divided. Approximate b(r) in the interval 
(m- l)A<t<mAby 

NJ = A,- I + (4, - A,,- ,>[t - h - W]/A. 
Then there is found 

m 

Z N N-~YI %k- 1 - trn - 

u 

‘J& 

3Yj 

1~3yi _ trn _ ~)~YJI 

ill= 
1 

+ [83i :;I] [m3yJ+1 

W) 

(m - 1)3yJ+1] 
1 

(61) 

where H(q) and Y(q) denote functions depending 
on the eigenfunctions Nj and M, respectively, 
namely 

H=f2+ f&N, 
j=l 

Y ~(1 -f;)- 2 BjMr 
j=l 

The right-hand side of equation (55) may be 
expressed in terms of x and 4 so that (1 - gE) is a 
factor. As a result when equations (58) and (59) 
are substituted into the left-hand side of equation 
(55), g, disappears as a parameter and there 
results an integral equation for fi in the range 
0 < x 5 3. An iteration scheme for solving this 
equation is readily established since it is of the 
form of an inhomogeneous Volterra equation. 
In evaluating the integrals appearing in equations 
(58) and (59) it is found convenient to use the 
idea behind Filton’s method for evaluating 
Fourier trigonometric coefficients of high order 
4c 

which is independent of A. The result given by 
equation (61) is far more accurate than the usual 
integration formulas applied to the entire inte- 
grand. 

The iteration procedure for the solution of the 
integral equation may be applied first with only 
equation (58) considered. After convergence is 
obtained, this approximation to 0 is then used 
as a first approximation with both equations 
(58) and (59) included. It is found that final 
convergence to within one per cent over the 
entire range of x of interest is obtained in four 
iterations if this procedure is followed. 

Consider next the solution of the species 
equation. To simplify the notation with no loss 
in generality let x be a particular mass fraction, 
e.g. the mass fraction of the injected gas, and 
let its value in the free stream be x,. Take the 
point of view that x, is known but anticipate 
the result that x,,,(O) = x,. Then following 
through the analysis of the energy equation we 
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obtain for the first- and second-order solution 

+ [ i G,(s, v ; sot vo)J(so, ro) dso dvo 

= zP(s, q) + ?P’(s, Fj) (62) 

where 0, Gz, and J are as given previously and 
where x,(O) = x,. 

Now the boundary condition determining 
x, expresses the fact that for steady flow there 
is no net flux of gas from the external stream into 
the porous surface; it is in terms of 3 given by 

x,(3,0) = 43*(x, - 1c,) (63) 

where X~ is the concentration of x interior to the 
porous surface. It is clear from a comparison of 
equations (62) and (63) with equations (55), (58) 
and (59) that the solution for J(9) yields not only 
the distribution of gW but of x, as well ; explicitly 
we have 

x, - x, l-g, h 
=-----.-= 

% 
- x, 1 - @c @* 

(64) 

The results of our numerical analysis for the 
first and second approximations to 8 are shown 
in Fig. 5 where we have used 10 terms in the 
eigenfunctions N, and M,. Also shown there for 
comparison purposes is the result which is 

FIG. 

"0 0.1 0.2 

5. = 3*. 
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given by [13] and which is presumably more 
accurate in that five terms in the expansion for x 
are included. The satisfactory agreement will be 
noted. It is perhaps of interest to compare the 
results in Fig. 5 with those obtained from the 
higher order calculation for the two-dimen- 
sional case by Libby and Chen [8] ; suppose we 
consider two stations, one on a cone at a distance 
x from the apex and one on a wedge an equal 
distance x from the edge with the same externai 
flows and with the same values of the mass flux 
ratio (pu),,,/p,u, on the two bodies. Then from 
equation (52) and the definition of t given 
previously we conclude that at these two 
stations (-6:)/x = 3’; we thus find that 8 for the 
station on the cone given by the present analysis 
is considerably less than on the wedge which 
implies that the thermal protection afforded by 
the porous cooling is much less effective on the 
cone than on the wedge. 
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Zusammenfaswng--E!ine Analyse wird durchgeftihrt fiir die Felder der Geschwindigkeit, der Energie und 
der Konzentration in laminaren Grenzschichten mit beliebig verteiltem Stoffibergang an der Oberfllche. 
Der Einfluss des Stofftransports wird dabei als Striimung behandelt. Die Einfhisse erster Ordnung sind 
einfach numerisch auszuwerten; Einfliisse hoherer Ordnung lassen sich systematisch erhalten, aber 
erfordem bescheidenen Rechenaufwand zur numerischen Auswertung. Eine Anwendung erfolgte fur die 
Grenzschicht mit gleichmlssigem Stoffiibergang und mit Energie- und Konzentrationsausgleich an der 

Oberflache. 

hlEOTaqilJ+-npOBexeH aHaJlA3 nOnen CKOPOCTM, 3HepruU u KOH~eHTPaIJMu B JlaMuHapHJdX 

norparrarsbtx cnorix c npOu3BOJlbHO pacnpeneneHHbrU ItepeHocoM Mac&r Ha ItOBepXHOCTR. 
AHanUaOCHOBbtBaeTCHHapaCCMOTpeIrUU 3I#tI#IeKTanepeHOCaMaCCbIKaKRBJIeHURB03Mj'IIJeHuR. 
3@@eKTbl nepBOr0 nOpRAKa YUCJIeHHO paCCYuTbIBaH)TCFI ~OBOJIbHO npOCT0; a$$eKTbl 6OJIee 

BbICOKOrO nOpfIJJKa MOWHO IIOJrJ'YUTb CUCTeMaTU'IeCKU, HO UX YUCJEHHJdti paCV&T Tpe6j’eT 

HeKOTOPMX J’CUJlMti. itHEW paCIIpOCTpaHeH Ha IIOrpaHUVHLdti CJlOit Ha KOHyCe C ORHO- 

poaubrM nepeHocoM MaccbI B npe~nonoHceKuu BanaHca auepruu u KoHqeHTpaquu Ha no- 

BepXHOCTU. 


